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Abstract.   Landsat data are increasingly used for ecological monitoring and research. These 
data often require preprocessing prior to analysis to account for sensor, solar, atmospheric, 
and topographic effects. However, ecologists using these data are faced with a literature con-
taining inconsistent terminology, outdated methods, and a vast number of approaches with 
contradictory recommendations. These issues can, at best, make determining the correct pre-
processing workflow a difficult and time- consuming task and, at worst, lead to erroneous 
 results. We address these problems by providing a concise overview of the Landsat missions 
and sensors and by clarifying frequently conflated terms and methods. Preprocessing steps 
commonly applied to Landsat data are differentiated and explained, including georeferencing 
and co- registration, conversion to radiance, solar correction, atmospheric correction, topo-
graphic correction, and relative correction. We then synthesize this information by presenting 
workflows and a decision tree for determining the appropriate level of imagery preprocessing 
given an ecological research question, while emphasizing the need to tailor each workflow to 
the study site and question at hand. We recommend a parsimonious approach to Landsat pre-
processing that avoids unnecessary steps and recommend approaches and data products that 
are well tested, easily available, and sufficiently documented. Our focus is specific to ecological 
applications of Landsat data, yet many of the concepts and recommendations discussed are 
also appropriate for other disciplines and remote sensing platforms.

Key words:   atmospheric correction; change detection; decision tree; ecology; image; normalization; 
 radiometric correction; remote sensing; review; satellite; topographic correction; workflow.

iNtRoductioN

Landsat data have become exceedingly integrated into 
Earth observation and monitoring applications, particu-
larly within the last decade (Wulder et al. 2012, Turner 
et al. 2015). This recent increase is due in part to Landsat’s 
free and global coverage; when Landsat data became 
freely available in 2009, the USGS saw a 50- fold annual 
increase in image downloads (Miller et al. 2011). The 
Landsat program’s ever- expanding image archive is an 
invaluable data set for ecological monitoring, change 
detection, and biodiversity conservation (Cohen and 
Goward 2004, Loveland and Dwyer 2012, Kennedy et al. 
2014, Turner et al. 2015, Vogelmann et al. 2016). Before 
these data can be used for certain ecological analyses, 

they must be preprocessed to account for sensor, solar, 
atmospheric, and topographic effects. However, each 
preparation step further alters the data from their original 
values, increasing the potential to introduce error 
(Kennedy et al. 2009). Determining the appropriate level 
of preprocessing is a significant barrier to non- remote 
sensing scientists who lack expertise in the numerous and 
constantly changing techniques necessary to preprocess 
these data (Pettorelli et al. 2014). This difficulty is exac-
erbated by preprocessing approaches that are similar but 
distinct, each with numerous possible workflows that 
analysts must navigate. Furthermore, explanations of the 
specific preprocessing steps taken in ecological studies 
vary; some offer detailed technical accounts, while others 
provide just a few broad summary sentences. These 
inconsistencies result in confusion and ambiguity, par-
ticularly for researchers and managers who would like 
to use Landsat data in their work but do not have a clear 
roadmap for how to do so.

Ecology, 98(4), 2017, pp. 920–932
© 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf  of the Ecological Society of America. 
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited.

Manuscript received 28 July 2016; revised 23 December 
2016; accepted 3 January 2017. Corresponding Editor: David 
S. Schimel.

4E-mail: nicholas.young@colostate.edu

mailto:nicholas.young@colostate.edu


April 2017 921SURVIVAL GUIDE TO LANDSAT PREPROCESSING

C
o
n
C
e
p
ts &

 s
yn

th
e
s
is

Terminology adds to the challenge of determining the 
most appropriate preprocessing workflow. The remote 
sensing community has made efforts to standardize its 
terminology (Schaepman- Strub et al. 2006), but terms are 
often conflated in more applied studies published in eco-
logical journals. This contributes to the continued use of 
outdated or redundant terms, which creates confusion 
for researchers attempting to reproduce or expand on 
published research methods.

Our purpose is to clarify and synthesize the preparation 
of Landsat imagery for ecological applications. We begin 
with a concise overview of the Landsat missions. We then 
describe the different levels of preprocessing and the 
sequence in which preprocessing steps should be applied, 
while clarifying inconsistent remote sensing terminology 
(Appendix S1: Table S1). Finally, we present a decision tree 
to help analysts determine the level of preprocessing nec-
essary for their study, and provide examples of its imple-
mentation in common ecological analyses. We stress that 
this paper does not contain the only available or appro-
priate approaches for all circumstances, nor is it meant to 
serve as an introduction to the field of remote sensing. Our 
aim is to address common questions that have repeatedly 
been raised during our collective experience as scientists 
working with Landsat data. As such, this paper is intended 
as a guide for novice users of Landsat imagery as well as a 
concise reference for those with more experience.

Overview and synthesis of the Landsat missions

The National Aeronautics and Space Administration 
(NASA) launched the first Landsat satellite in 1972 and 
has since followed with six successfully launched satellites 
(Fig. 1). While NASA builds and launches the satellites, 
the U.S. Geological Survey (USGS) has operated the mis-
sions since the 1990s. The Landsat program offers a near- 
continuous record of imagery, but there are a number of 
differences among the satellites and sensors that pose 
challenges for experts and non- experts alike (Table 1). For 

example, the spectral range of many bands have changed, 
which can create issues for time series analyses (e.g., 
Holden and Woodcock 2016). The Landsat satellites have 
been organized into three groups based on their sensor 
and platform characteristics (Chander et al. 2009) and in 
the following section, we modify this framework and 
include recent and upcoming Landsat missions.

The first group, Landsat 1–3, were equipped with the 
Multispectral Scanner (MSS), which recorded data in four 
spectral bands; two visible and two near- infrared (NIR; 
Table 1). The next group, Landsat 4–7, carried either the 
Thematic Mapper (TM) or Enhanced Thematic Mapper 
(ETM+) sensors, which featured finer spatial resolution 
(i.e., pixel size), and increased radiometric resolution (i.e., 
bit depth) than the MSS. This group also had expanded 
spectral coverage, adding bands in the middle- infrared and 
thermal- infrared wavelengths. It is worth noting that the 
middle- infrared is now often referred to as the shortwave 
infrared (SWIR). While middle- infrared and SWIR gen-
erally cover different, but largely overlapping, spectral 
ranges, the relevant Landsat bands fall within this overlap. 
For these reasons, we use the term SWIR.

The satellites in the TM/ETM+ group have slightly dif-
ferent characteristics from one another. In addition to the 
TM instrument, Landsat 4–5 also had an MSS scanner 
onboard. Landsat 7 included a panchromatic band with 
increased spatial resolution. The third group currently 
consists of Landsat 8, equipped with its Operational Land 
Imager (OLI) and Thermal Infrared (TIRS) sensors. The 
OLI augments the spectral resolution of the TM group 
with the addition of a deep blue and a cirrus band, while 
TIRS adds a second thermal band. These instruments also 
offer a number of sensor and calibration improvements 
over the previous Landsat missions (Roy et al. 2014). The 
other member of the third group, Landsat 9, is currently 
planned as an upgraded rebuild of Landsat 8 and is 
scheduled to be launched in 2020.

The data generated from the Landsat program offer a 
number of characteristics that can support ecological 

Fig. 1. A timeline of Landsat satellites and sensors. Landsat 9 launch date is based on recent congressional appropriations 
language.
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enable local to regional- scale mapping of vegetation type 
and condition (Jones and Vaughan 2010). The NIR and 
SWIR bands are particularly useful for mapping plant 
and soil moisture characteristics, as well as water quality 
in wetlands, rivers, and coastal environments (Roy et al. 
2014). The thermal infrared bands play an important role 
in mapping and understanding wildfire ecology (Wang 
et al. 2010), managing of water resources and monitoring 
of evapotranspiration (Anderson et al. 2012), and land 
cover classification (Sun and Schulz 2015). The majority 
of Landsat data are delivered at a pixel size of 30 m 
(Table 1). This pixel size prevents fine- scale mapping of 
surface features; however, it is often beneficial in ecology, 
as it accurately captures landscape- scale characteristics 
while avoiding the significant computational require-
ments associated with hyper- spatial and hyper- spectral 
sensors. This pixel size also tends to correspond well with 
many management- level activities. Landsat 4–8 have a 
revisit interval of 16 d (Schowengerdt 2007), which facil-
itates studies of landscapes through time (for a review, see 
Hansen and Loveland 2012, Willis 2015). Additionally, 
ecologists have increasingly incorporated Landsat 
imagery, Global Positioning System (GPS) field data, 
topographic data, and other ancillary variables in correl-
ative spatial models over the last decade.

Data coverage and dissemination

Landsat satellites record data as they orbit the Earth; 
these data are then systematically partitioned into images 
based on scene location and date. The terms scene and 
image are often confused in the literature when referring to 
these data. We use the framework provided by Strahler 
et al. (1986) who define the scene as the extent, or footprint, 

that exists on the ground, while the image is the collection 
of spatially arranged measurements (i.e., bands) captured 
in the scene at a single time. Each scene has an assigned 
location that is defined by the Worldwide Reference 
System (WRS). This system assigns a path determined by 
the  satellite’s orbit (i.e., vertical, latitudinal) and a row 
(i.e.,  horizontal, longitudinal) for each scene, providing a 
global index for database cataloging, querying, and dissem-
ination. Landsat data are distributed in two WRSs; Landsat 
1–3 follow WRS1, while Landsat 4–8 follow WRS2 due to 
the differing orbit altitudes of the satellites.

The USGS manages Landsat data and disseminates 
them via a number of online portals (e.g., EarthExplorer; 
USGS 2015b). Although a number of Landsat- based 
data products are available at various levels of preproc-
essing (e.g., WELD; Roy et al. 2010), we focus on the 
current and primary Landsat archive processed by the 
USGS, with particular emphasis on the Level- 1 and 
higher- level Climate Data Records (CDR) products. 
Level- 1 products are a part of the Collection 1 data sys-
tematically processed by the USGS to standardized tiers 
based on data quality and processing level, while higher- 
level CDR products provide additional levels of preproc-
essing. These products are explained further in the 
following sections. At this time, former Landsat products 
(e.g., L1T) are being reprocessed to be included in the 
Collection 1 Level- 1 data archive.

The USGS is working on a project to provide data in an 
alternative format called Analysis Ready Data (ARD) as 
an addition to the products already available. The initial 
purpose for these data is to provide standardized products 
for users of large data amounts over space and/ or time 
and to reduce or eliminate the need for preprocessing. 
These efforts may provide a reasonable alternative to 
some or all of the preprocessing steps described below for 

tablE 1. Summary of band designations and pixel size (m) for all Landsat satellites (LS) and sensors.

Landsat sensor LS 1–5 MSS LS 4–5 TM LS 7 ETM+ LS 8 OLI/TIRS Pixel size (m)

Coastal aerosol B1 (0.43–0.45) 30
Blue B1 (0.45–0.52) B1 (0.45–0.52) B2 (0.45–0.51) 30
Green B1 (0.5–0.6) B2 (0.52–0.60) B2 (0.52–0.60) B3 (0.53–0.59) 30 (60† for MSS)
Red B2 (0.6–0.7) B3 (0.63–0.69) B3 (0.63–0.69) B4 (0.64–0.67) 30 (60† for MSS)
NIR 1 B3 (0.7–0.8) 60
NIR B4 (0.8–1.1) B4 (0.76–0.90) B4 (0.77–0.90) B5 (0.85–0.88) 30 (60† for MSS)
SWIR 1 B5 (1.55–1.75) B5 (1.55–1.75) B6 (1.57–1.65) 30
SWIR 2 B7 (2.08–2.35) B7 (2.09–2.35) B7 (2.11–2.29) 30
Thermal B6 (10.40–12.50) B6‡ (10.40–12.50) B10 (10.60–11.19) 

B11 (11.50–12.51)
30†

Pan- Chromatic B8 (0.52–0.90) B8 (0.50–0.68) 15
Cirrus B9 (1.36–1.38) 30

Notes: The table shows each band number and the corresponding wavelength range (in parentheses, micrometers). The exact spec-
tral range of each band varies among sensors, but are comparable for many applications. The MSS bands were originally numbered 
4–7, but were relabeled 1–4 with the launch of Landsat 4. Empty cells occur where a particular sensor was not present in a satellite. 
This table was adapted from USGS (2015a).

† Data are recorded at a coarser pixel size, but upsampled and delivered at the size listed in table. Native pixel size of MSS data was 
79 × 57 m. Native pixel size of thermal data has changed with the sensors: 60 m (TM), 120 m (ETM+), 100 m (TIRS).

‡ Landsat 7 thermal data are acquired at both high and low gain settings. The data are therefore delivered with two Band 6 files 
(USGS 2015a).
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certain users, but understanding the motivation and steps 
of preprocessing will still be valuable in determining 
whether Level- 1 or ARD is appropriate.

pREpRocEssiNg

Images acquired by Landsat sensors are subject to dis-
tortion as a result of sensor, solar, atmospheric, and top-
ographic effects. Preprocessing attempts to minimize 
these effects to the extent desired for a particular appli-
cation. However, preprocessing steps are time- consuming, 
imperfectly address the artifacts to be removed, and have 
the potential to introduce additional sources of error. 
Many ecological applications require further preproc-
essing than that provided by Level- 1 products or even 
CDR products before performing an analysis. These pre-
processing steps can significantly impact analysis results 
(Sundaresan et al. 2007) and have a general order in 
which they should be performed. While methods sections 
in the literature commonly mention these steps, the justi-
fication or reasoning for performing them are often vague 
or omitted, creating confusion about which steps should 
be considered and what they accomplish for a particular 
application. In this section, we provide a description of 
the most common preprocessing steps applied to Landsat 
products and their importance.

Before preprocessing Landsat imagery, it is important 
to understand the units commonly associated with these 
data: digital number (DN), radiance, and reflectance for 
the visible to SWIR (vis- SWIR) bands and, for the 
thermal bands, DN, radiance, and temperature (Fig. 2). 
Initial sensor- recorded signals are calibrated to radiance 
values using gains and offsets that differ among sensors 
and over time due to sensor degradation. Radiance 
(watts·steradian−1·m−2·μm−1) is the measure of energy 
flux recorded by the sensor. These values are then res-
caled to digital number as 6- bit or 7- bit (MSS), 8- bit 
(TM, ETM+), or 12- bit (OLI, TIRS) unsigned integers 

(Chander et al. 2009). Landsat Level- 1 products are 
delivered as digital numbers, which can be converted to 
absolute units of radiance or reflectance. Reflectance is a 
unitless measure of the ratio of radiation reflected by an 
object relative to the radiation incident upon the object. 
Ecological studies most commonly use DN and reflec-
tance. For the thermal bands, studies often use DN or 
temperature (degrees Kelvin).

Preprocessing to these specific units, along with cor-
recting for radiometric artifacts, typically follows a 
general workflow (Fig. 3). Most of the steps can be clas-
sified into three broad groups: geometric, absolute, and 
relative. Some steps convert the imagery from one unit to 
another (e.g., at- sensor radiance to top- of- atmosphere 
reflectance via solar correction), while others specifically 
address potential artifacts (e.g., topographic correction). 
We present the workflow assuming the analyst is starting 
with either Level- 1 or high- level surface reflectance CDR 
products. Although other products (e.g., Level 0 raw 
imagery) may be desired for a particular analysis, they are 
rarely used in ecological studies and require additional 
expertise and understanding to process. Note that Level- 1 
products have assumptions (e.g., the use of cubic convo-
lution resampling vs. alternative resampling methods) 
that may need to be considered for some applications. 
The preprocessing steps presented in the workflow can be 
implemented using a variety of software packages that 
continue to develop and improve. Some free options 
include R packages ‘RStoolbox’ and ‘landsat’, as well as 
QGIS, GRASS GIS, Google Earth Engine, and 
MultiSpec. Proprietary software includes ENVI, ArcGIS, 
ERDAS IMAGINE, Geomatica, and MATLAB. Some 
of these software options provide a graphical user 
interface while others use command- line processing, 
which requires code input in various programming lan-
guages. Therefore, software selection is largely driven by 
the familiarity of the analyst and their collaborators with 
the software as well as the demands of a given analysis.

Fig. 2. The common units of Landsat imagery used in ecological analysis. The units change as each step of absolute correction 
is performed: conversion to radiance, solar correction/thermal calibration, and atmospheric correction.
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Geometric correction

The processes of georeferencing (alignment of imagery 
to its correct geographic location) and orthorectifying 
(correction for the effects of relief and view direction on 
pixel location) are components of geometric correction 
necessary to ensure the exact positioning of an image. 
Imagery can be positioned relative to the datum, topog-
raphy, or other data types, including reference data and 
additional geospatial layers that might be used in the 
analyses. Landsat Level- 1 products are precision regis-
tered and orthorectified through a systematic process that 
involves ground control points and a digital elevation 

model (DEM). The Landsat Level- 1 products are termed 
“terrain- corrected” and the majority of images can be 
used as delivered by the USGS (2015c). Collection 1 
images are classified into tiers based on quality and pro-
cessing level (USGS 2016c). Tier 1 products are consist-
ently georegistered within ≤12 m radial root mean square 
error, making them suitable for time- series pixel- level 
analysis. The other tiers (currently Tier 2 and Real- Time) 
may not necessarily be as accurate and should be eval-
uated on a case- by- case basis. Comparatively, the 
geometric accuracy of Pre- Collection L1T products is 
approximately 30 m within the United States and about 
50 m globally but the relative geolocation within an image 

Fig. 3. Sequential workflow of potential preprocessing steps. Steps are presented in the recommended sequence, but not all 
steps are necessary for all analyses. Boldface type indicates preprocessing level. The two flowcharts show (a) general preprocessing 
steps for visual and shortwave infrared (vis- SWIR) data from both high- level data products (dashed line; e.g., Landsat surface 
reflectance CDR) and Level- 1 Landsat products (solid line) and (b) the general preprocessing steps for thermal data. Note that a 
high- level land surface temperature product is not currently available, but is expected to be available soon. Refer to the section 
Preprocessing in the text for more detail and discussion of each step.
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is much better (Loveland and Dwyer 2012). A small 
fraction of Tier 2 and Pre- Collection L1T images contain 
errors and there may be cases where specific Landsat 
images require additional georeferencing. For example, 
additional georeferencing is more likely to be needed 
when working across large spatial extents or timeframes, 
working with older imagery in the Landsat archive, or 
working in areas of the world where the USGS has not 
been able to obtain sufficient ground control points 
(although the USGS is continually improving its ground 
control; Bodart et al. 2011, Avitabile et al. 2012). When a 
workflow involves stacking multiple images, mosaicking 
adjacent images, compositing ancillary spatial layers, or 
using georeferenced ground data, the alignment of fea-
tures in the images should be checked quantitatively with 
ground control points or, at the very least, through visual 
assessment. Discrepancies should be corrected prior to 
analysis using a process known as co- registration (often 
referred to as just registration). Registration involves 
aligning data layers relative to one another, while georef-
erencing involves aligning layers to the correct geographic 
location. Registration is a critical step in preprocessing 
Landsat imagery for ecological analysis, since a misregis-
tration can result in significant errors, especially in change 
detection analyses (Sundaresan et al. 2007). When relating 
Landsat data to ancillary georeferenced data, such as 
GPS- marked plot data, images should be georeferenced 
rather than registered to maintain alignment between 
data. There are numerous approaches for both georefer-
encing and registering Landsat data, and the process 
might involve a simple pixel shift or a more complex auto-
mated feature detection and matching between images 
(for review, see Brown 1992, Zitová and Flusser 2003).

Absolute radiometric correction

Absolute radiometric correction (sometimes referred 
to as just absolute correction) can refer to a single pre-
processing step or a collection of preprocessing steps that 
account for sensor, solar, atmospheric, and topographic 
effects. The term absolute is used to describe the process 
of obtaining “true” and comparable values, although the 
corrected values are still approximations. Values obtained 
from absolute correction can be compared (across time, 
space, or sensor) to images that have undergone the same 
level of correction. Some levels of absolute correction are 
better suited for comparing across images (e.g., surface 
reflectance/land surface temperature) than others (e.g., 
at- sensor radiance). The term absolute correction is 
heavily used in the Landsat preprocessing literature to 
clarify the interpretation of the resulting values, and is 
often contrasted with relative radiometric correction (see 
Relative radiometric correction).

Conversion to radiance

Significant efforts have been made to bring the data col-
lected across the multiple Landsat missions and 

acquisition dates to a common scale for consistent Earth 
monitoring through time (Chander et al. 2009, Markham 
and Helder 2012). Digital numbers cannot be used to 
compare spectral values across time due to sensor degra-
dation and differences between sensors. While DNs can 
be used effectively for many single- image analyses, 
absolute correction is needed to bring the values to a com-
parable scale. As described above, the DNs provided in 
Level- 1 products are calibrated radiance values that have 
been scaled to varying bit depths. Conversion to radiance 
is the preprocessing step whereby the DNs are converted 
back to radiance (often termed at- sensor radiance) by 
using rescaling factors (i.e., calibration coefficients) asso-
ciated with each band for a given sensor. The rescaling 
factors are stored in the metadata file associated with each 
image. Often this preprocessing step is described as sensor 
calibration, which specifically refers to the determination 
of the coefficients used to conduct the conversion, not the 
conversion itself. The conversion to radiance step is nec-
essary before additional absolute correction steps; 
however, this level of preprocessing alone should rarely be 
used for analysis because the conversion is linear and 
therefore little additional information is gained relative to 
using DNs. Many of the available software programs will 
automatically perform this conversion, as well as an addi-
tional solar correction (see Solar correction), when sup-
plied with the metadata file associated with the image (a 
text file with “MTL” in the name).

Solar correction

The next preprocessing step, solar correction, accounts 
for solar influences on pixel values. Solar correction con-
verts at- sensor radiance to top- of- atmosphere (TOA) 
reflectance by incorporating exoatmospheric solar irra-
diance (power of the sun), Earth- Sun distance, and solar 
elevation angle. These vary with date, time, and latitude 
so their effects must be accounted for when working 
across multiple images, even within a single scene. Top- 
of- atmosphere reflectance is a measure of the proportion 
of incoming radiation reflected from a surface as detected 
from above the atmosphere. The solar correction step is 
often grouped with conversion to radiance in the liter-
ature. Similar to conversion to radiance, the solar cor-
rection values for Landsat data can be retrieved from the 
metadata files associated with each image or, in some 
cases, found in lookup tables. Landsat 8 provides coeffi-
cients to convert directly to a TOA reflectance product 
from DNs, but this should not be considered true TOA 
reflectance since the process does not provide a correction 
for the solar elevation angle (USGS 2014).

Atmospheric correction

The energy that is captured by Landsat sensors is influ-
enced by the Earth’s atmosphere. These effects include 
scattering and absorption due to interactions of the elec-
tromagnetic radiation with atmospheric particles (i.e., 
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gases, water vapor, and aerosols). Atmospheric correction 
attempts to account for these effects. However, some 
atmospheric effects are highly variable over the Earth’s 
surface and can be difficult to correct in Landsat imagery. 
While it is not always necessary to atmospherically correct 
Landsat data to surface values, there are instances where 
this level of correction is needed. In general, absolute 
atmospheric corrections are needed when (1) an empirical 
model is being created for application beyond the data 
used to develop it, (2) there is a comparison being made to 
ground reflectance data such as a field- based spectroradi-
ometer, or (3) as an alternative to relative correction when 
comparisons are being made across multiple images. All 
atmospheric correction methods have associated assump-
tions about the target and the nature of the atmospheric 
particles or emissivity (for land surface temperature). 
There are numerous atmospheric correction methods 
available, ranging from simple approaches that use only 
within- image information such as dark object subtraction 
(Chavez 1988), to more complex and data- intensive 
approaches such as the method used for the Landsat 
Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) products (Masek et al. 2006). The complex 
methods are generally more accurate than simpler 
methods; however, they often require ancillary data about 
atmospheric conditions at the time of image collection 
and can be difficult to implement, especially for non- 
remote sensing experts. Further, these corrections can 
introduce additional errors (Schroeder et al. 2006). As 

such, we recommend not performing atmospheric cor-
rection unless necessary (discussed in Determining the 
appropriate level of preprocessing and in Fig. 4) and to use 
freely available high- level products when needed 
(e.g., Landsat CDR; discussed in High-level products).

Topographic correction

Solar correction does not account for illumination 
effects from slope, aspect, and elevation that can cause 
variations in reflectance values for similar features with 
different terrain positions (Riaño et al. 2003). Topographic 
correction is the process used to account for these effects. 
While this correction is not always required, it can be 
especially important for applications in mountain systems 
or rugged terrain (Colby 1991, Riaño et al. 2003, Shepherd 
and Dymond 2003), which are common settings for sat-
ellite monitoring due to the difficulty of accessing these 
environments for field measurements.

An important distinction should be made between top-
ographic and terrain correction. Topographic correction 
is a radiometric process while terrain correction is 
geometric in nature. Although Landsat Level- 1 products 
are terrain corrected, this does not account for the same 
effects as a topographic correction. Terrain correction 
ensures each pixel is displayed as viewed from directly 
above regardless of topography or view angle, and, while 
important, does not account for the same effects as top-
ographic correction.

Fig. 4. Dichotomous decision tree for determining the level of preprocessing necessary for most ecological applications, guided 
by the spatial and temporal extent of the study. The graphics on the tree branches represent images (gray squares) and the project 
study area (dashed lines). “Single time” refers to images captured on the same day (or closest day if adjacent paths) to represent one 
period in time, or images made into a mosaic to represent a single date. Normalization for multi- scene and multi- temporal studies 
should be done in two steps: horizontal (images from across multiple with same/similar dates) relative correction then vertical 
(images from across different times) relative correction.
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Numerous methods exist for performing topographic 
correction. Band ratios are a simple way to partially 
reduce impacts from illumination effects without the use 
of a digital elevation model (DEM; Holben and Justice 
1981, Colby 1991, Hale and Rock 2003). This method 
assumes reflectance will increase or decrease propor-
tionally in both bands being used, however this 
assumption is demonstrably false for indirect radiation 
(i.e., diffuse irradiance; Leprieur et al. 1988, Conese et al. 
1993). Conversely, more complex approaches can be used 
with a DEM to model the illumination effects by taking 
into account the specific slope and aspect of the terrain. 
Several methods are commonly used in the literature 
(Riaño et al. 2003, Vanonckelen et al. 2013), and 
numerous studies comparing these methods have been 
published with varying results depending on study 
location and application (e.g., Meyer et al. 1993, Lu et al. 
2002, Hale and Rock 2003, Riaño et al. 2003, Richter 
et al. 2009, Hantson and Chuvieco 2011, Vanonckelen 
et al. 2013, Adhikari et al. 2015). While no specific topo-
graphic correction method is superior in all cases, the 
Minnaert Correction (Minnaert 1941) and C- correction 
(Teillet et al. 1982) methods have shown consistently 
good performance for removing topographic effects 
within Landsat imagery (Riaño et al. 2003, Gao and 
Zhang 2009, Richter et al. 2009, Hantson and Chuvieco 
2011, Vanonckelen et al. 2013). Sola et al. (2016) provide 
a recent and thorough evaluation of many of these 
methods, which can be implemented in several open- 
source and commercial software products. Given the 
number of available approaches and the difficulty of their 
application by non- remote sensing experts, analysts 
should carefully consider whether a topographic cor-
rection is necessary for their study. While this preproc-
essing step can be more important than atmospheric 
correction for some applications in topographically 
complex regions (Vanonckelen et al. 2013), this step is not 
needed for every scenario.

Relative radiometric correction

Ecologists often conduct analyses that require con-
sistent spectral values across space and time. However, 
such studies do not necessarily require the use of true 
surface reflectance values. A common preprocessing step 
when using multiple images is a relative radiometric cor-
rection or normalization (hereafter referred to as relative 
correction). Relative correction brings each band of an 
image to the same radiometric scale as the corresponding 
band of a reference image. This presumably accounts for 
sensor, solar, and atmospheric differences, but does not 
expressly account for vegetation phenological differences.

Similar to atmospheric and topographic correction, 
there are many approaches to relative correction, and 
there is no clear preferred method that consistently per-
forms best across all applications (Chen et al. 2005). 
Relative correction typically uses the overlapping regions 
between a reference image and another image to be 

transformed. Two general approaches are used to 
compare these overlapping regions. The first is histogram 
matching (also referred to as equalizing), which uses 
information from all pixels in the overlapping regions. 
We do not recommend histogram matching Landsat 
data, as this approach is generally used for relatively cor-
recting multiple images from the same day when there is 
little variation in the solar and atmospheric conditions. 
Adjoining Landsat images collected on the same day (i.e., 
along the same path) can be mosaicked without a relative 
correction.

The second approach uses pseudo invariant features 
(PIF; generally consisting of one or more pixels) or pseudo 
invariant targets (PIT; generally a single pixel), where non- 
changing features or targets in the overlapping area are 
used to bring the images to a common scale (Schott et al. 
1988). These pseudo invariant features/targets can be 
selected manually or automatically through statistical 
algorithms (Du et al. 2002, Bao et al. 2012). Comparisons 
have shown that performing a relative correction might 
provide more accurate results than an absolute atmos-
pheric correction, especially when comparability is more 
important than the pixel value (Schroeder et al. 2006). 
Furthermore, some studies have performed relative cor-
rection of atmospherically corrected imagery to account 
for residual differences between images arising from 
imperfect preprocessing when surface reflectance is desired 
(Li et al. 2014). We suggest this approach only if both com-
parability between images and surface reflectance units are 
needed for a particular application. If the objective is to 
obtain images that are spatially or temporally consistent 
(and that is the only goal of the relative correction), then 
relative correction from a more basic preprocessing level, 
such as DN or TOA, would be the most appropriate 
option, as correcting to surface reflectance serves no 
purpose and injects a potential source of error.

Preprocessing for spectral indices

Spectral indices are transformations and reductions of 
spectral data that are used to highlight specific phe-
nomena on the landscape. Indices facilitate data interpre-
tation and comparison, both qualitative (e.g., pattern 
visualization) and quantitative (e.g., monitoring plant 
health). A plethora of spectral indices have been designed 
to highlight vegetation, hydrology, geology, burned 
areas, and snow, to name a few (for a review, see Jackson 
and Huete 1991, Bannari et al. 1995, Lozano et al. 2007). 
They can be particularly useful as relative measures 
where reference data do not exist to model such variables 
quantitatively.

The approach to preparing multiple bands for use in 
spectral indices should be the same as the approach for 
preparing individual bands for any analysis; the analyst 
should determine what level of preprocessing is necessary 
based on the characteristics and objectives of the study. 
Ratio- based indices account for multiplicative atmos-
pheric artifacts, but do not correct additive effects and 
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atmospheric differences between bands. Therefore, when 
comparing spectral indices across multiple images (time 
or space), we recommend a correction to eliminate such 
effects. There are potential exceptions; notably, some 
indices have correction factors that are dependent on the 
data being in a specific unit, such as the soil adjusted veg-
etation index (reflectance) or the tasseled cap transfor-
mation (varies by sensor/method). Further, if image 
correction is not feasible, atmospherically resistant 
indices may be used to reduce some atmospheric effects 
(Pinty and Verstraete 1992, Huete et al. 1997).

high- lEVEl pRoducts

High- level Landsat products are data that have been 
preprocessed to a level beyond the specifications of 
Level- 1 products and are directly available for download. 
These products eliminate the need for the user to com-
plete certain preprocessing steps, a welcome advancement 
that simplifies the preprocessing workflow.

The USGS Landsat Surface Reflectance Climate Data 
Records (CDR) are the most notable of the current high- 
level data products. These are surface reflectance products 
that can be downloaded from multiple USGS sources 
(USGS 2015b, 2016a). The Landsat surface reflectance 
CDRs are processed to calibrate raw DNs to TOA reflec-
tance (also available for download), and then corrected 
to surface reflectance using atmospheric parameters and 
a DEM. Furthermore, TOA brightness temperature, as 
well as masks for clouds, cloud shadows, adjacent clouds, 
land, and water are also available as high- level products 
from the USGS. Land surface temperature and MSS 
data are not currently included with the Landsat surface 
reflectance CDRs, however, the USGS has publicly 
stated its intent to release a land surface temperature 
product (Laraby 2016). The quality of the surface reflec-
tance CDR products can be adversely affected by low sun 
angle, excessive clouds, high latitudes (>65 degrees north 
or south), or locations that are very arid or snow/water 
dominated (USGS 2015d). Moreover, the process to 
develop surface reflectance CDR products contains non-
linear elements, which can introduce error and unwanted 
data artifacts. Nevertheless, these data are the products 
of high- quality, well- documented approaches that are 
likely as reliable as any approach readily available to 
ecologists. Quality assurance layers are available as an 
additional USGS high- level product for pixel- level con-
dition and validity flags.

The USGS continues to release additional high- level 
data and make improvements to the existing products. In 
addition to surface reflectance, the USGS has made 
available some of the most widely used spectral indices 
derived from Landsat Surface Reflectance high- level 
products (Masek et al. 2006). These products are gen-
erated from the surface reflectance data and therefore 
have the same caveats. However, they also carry addi-
tional assumptions inherent to the derivation of the 
indices themselves (e.g., coefficient values and correction 

factors; USGS 2016b). These are available through the 
USGS EROS Center Science Processing Architecture 
(ESPA) on demand interface (USGS 2016d). Fur-
thermore, at the time of this writing, the USGS has 
expressed that they will deliver essential climate variables 
(ECVs) that will include land surface temperature, 
burned area extent, dynamic surface water, and snow 
cover area as additional high- level products in the near 
future. While these products will provide the data 
required to perform large extent and accurate ecological 
analyses with only a fraction of the preprocessing time, 
users will benefit from understanding the concepts and 
assumptions that are inherent in their creation.

dEtERMiNiNg thE appRopRiatE lEVEl oF pREpRocEssiNg

While understanding the levels and appropriate order 
of preprocessing steps provides a necessary foundation, 
the analyst is ultimately left with the question, “What 
level of correction is ‘good enough’ for my study?” To 
help answer this question, we start with the guiding prin-
ciple that only the preprocessing steps necessary for a 
given analysis should be applied because each step may 
risk introducing artifacts and/or error into the data (Song 
et al. 2001, Riaño et al. 2003, Kennedy et al. 2009). Even 
with this core tenet, it can still be challenging to identify 
the appropriate level of preprocessing.

We designed a flexible decision tree to help navigate 
these choices (Fig. 4). The first row of the tree refers to 
analyses that require the data be converted to a specific 
value type, such as a parameter for an existing model. 
Beyond these scenarios, we recommend the analyst guide 
their decision by identifying how the spatial and temporal 
extent of their analysis relates to the existing scene bound-
aries. The questions in the decision tree specifically refer 
to when and where the analysis of spectral values is taking 
place within the broader workflow. Row two of the 
decision tree focuses on analyses taking place within a 
single image, and thus calls for the use of DNs to avoid 
unnecessary preprocessing. Row three considers analyses 
using multiple images. This could be multi- temporal (i.e., 
multiple images from different dates analyzed as separate 
time steps, also referred to as multi- date), multi- scene 
(i.e., images with different path/row designations), or a 
combination of the two. This row calls for either surface 
or relative units to account for differences between 
images resulting from sensor, solar, atmospheric, and 
topographic effects. In such cases, we recommend per-
forming a relative correction to normalize values. 
Nevertheless, because relative corrections typically 
require more expertise than obtaining surface reflectance 
CDR products, these products can be a valid and con-
venient alternative with high accuracy (Vuolo et al. 2015), 
especially if the images are similar in time, phenology, or 
growing degree days. Caution should be exercised with 
this approach when the analysis spans different sensors 
(e.g., Landsat 7 ETM+ and Landsat 8 OLI) since sys-
tematic biases appear among their surface reflectance 
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values, and these biases can be magnified in products 
such as the normalized difference vegetation index 
(NDVI; Roy et al. 2016).

We illustrate these concepts in the following section by 
walking through three examples commonly encountered 
by ecologists working with Landsat data: specific value 
type, change detection, and correlative modeling. These 
examples are not intended to be exhaustive, but demon-
strate the use and flexibility of the decision tree.

Example scenario 1: Specific value type

Landsat data are often used to measure specific 
physical properties of the Earth’s surface. For example, a 
researcher may want to use Landsat data to measure 
surface albedo to evaluate post fire dynamics in a forest 
environment. Because surface reflectance is used to derive 
surface albedo, the researcher would require a specific 
value type (Fig. 4, row 1) and preprocess the data to 
surface reflectance. Another example is the tasseled cap 
transformation. The coefficients used for the tasseled cap 
transformation vary between Landsat sensors; some are 
intended to be used with reflectance data, while others 
require DNs. In this case, the researcher would again 
require a specific value type and identify the specific level 
of preprocessing required for their sensor.

Example scenario 2: Change detection

The Landsat program’s historical archive makes it par-
ticularly useful for mapping environmental change. 
There are many approaches to change detection with 
remote sensing data, each with their own advantages and 
limitations. Most ecological studies addressing thematic 
change take either a pre- classification or post- 
classification approach.

Pre- classification change detection.—Pre- classification 
change detection involves comparing the spectral values 
from multiple dates and subsequently classifying the pix-
els by their change in values. Examples include image dif-
ferencing (i.e., subtracting pixel values between each pair 
of bands) and multi- temporal principal component anal-
ysis, in which the bands of two images are combined into 
a single composite raster and the data are transformed to 
identify change classes. In these cases, the spectral values 
are being compared across images from multiple times, 
and the imagery should be preprocessed to either surface 
reflectance or relative values to ensure comparability 
(Fig. 4, row 3).

Post- classification change detection.—Post- classification 
change detection involves classifying images from 
 multiple dates and subsequently comparing one cate-
gorical map to the other to identify changes. Consider a 
study designed to map forest loss by classifying the pixels 
of a 1980 Landsat image and a 2010 image of the same 
scene and subsequently calculating the changes in  classes. 

Although multiple times are used, the spectral values are 
being analyzed independently to create two categorical 
maps of forest cover because only one image is used for 
each classification. The analysis is detecting changes in 
the cover classes from each image, not the spectral val-
ues. It is therefore appropriate in this case to classify each 
image using its respective DN values (Fig. 4, row 2) and 
subsequently perform the change detection. If the anal-
ysis involved multiple scenes for each time period, then 
this would bring the user to the third row of the  decision 
tree and preprocessing to relative values or  using surface 
reflectance would be required (Fig. 4, row 3).

Example scenario 3: Mapping with correlative models

Landsat bands and derived spectral indices are 
increasingly used as variables in correlative models (e.g., 
regression tree analysis, random forests, MaxEnt). These 
are used to map continuous responses (e.g., percent 
cover, biomass, habitat suitability) as well as discrete 
classes (e.g., land cover type; He et al. 2015, Lawrence 
and Moran 2015). In such cases, if the study area is 
encompassed within a single image, DN is an appro-
priate preprocessing level to use (Fig. 4, section 2). 
However, including multi- temporal imagery in correl-
ative models can significantly improve mapping of tem-
porally dynamic features such as wetlands, vegetation, 
or deciduous forests (Baker et al. 2006, Evangelista et al. 
2009, Savage et al. 2015). There are a variety of ways to 
include multi- temporal imagery in such models. Digital 
number is appropriate when bands or indices from 
multi- temporal images are included as individual model 
variables and the data are not combined in any way 
(e.g., differencing, ratioing). This is because the images 
are being treated as individual variables and no analysis 
is taking place between the spectral values prior to model 
development. However, if the bands or indices are 
planned to be combined to produce a new variable, the 
spectral analysis is taking place across time and the data 
should be corrected to surface or relative values before 
combination and subsequent model development (Fig. 4, 
row 3). If the study area spans multiple scenes for any of 
the scenarios above, surface reflectance or relative values 
are necessary (Fig. 4, row 3).

coNclusioN

Landsat data are a rich resource for ecological analysis, 
but the literature and available resources to appropri-
ately make use of these data are inconsistent, disjointed, 
and challenging to interpret for non- experts. Our 
overview and synthesis summarizes the Landsat sensor 
characteristics and clarifies key preprocessing steps nec-
essary to work with the data. The workflow and decision 
tree can be used as guides for determining the necessary 
sequence of steps to achieve the appropriate level of 
image preprocessing for common ecological applica-
tions. Equipped with this knowledge, readers will be able 
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to critically evaluate the approaches described in the 
 literature and adapt them to their own application.

We recommend taking a parsimonious approach to 
preprocessing; correct the artifacts necessary for a par-
ticular application, but avoid unnecessary steps that may 
introduce additional artifacts without gaining additional 
value (Song et al. 2001, Riaño et al. 2003, Kennedy et al. 
2009). When analyzing across multiple images, we rec-
ommend performing a relative correction to normalize 
values. However, the quality and availability of high- 
level surface reflectance products continue to improve 
(Vuolo et al. 2015) and we encourage readers to consider 
using these products while taking into account the 
assumptions inherent in their creation.

This survival guide reduces the potential for confusion 
and ambiguity that many scientists face when determining 
how to preprocess their imagery for analysis. A better 
understanding of Landsat preprocessing can improve 
reproducibility and accuracy as ecologists and others con-
tinue to develop new applications for remote sensing data. 
This will facilitate integration with other remote sensing 
programs, such as the European Space Agency’s Sentinel- 2 
mission, which has similar spectral bands and is designed 
to integrate with the Landsat Program. Although there 
are still some issues when using these two data sources 
together (e.g., Storey et al. 2016), there are significant 
efforts underway (MuSLI, Multi- Source Land Imaging) 
to resolve them. This cross- platform consistency makes 
our conceptual workflow easily adaptable to current and 
future multispectral remote sensing missions, enabling 
unprecedented opportunities for comparative research 
and monitoring of ecological processes.
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